Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.420
Filtrar
1.
Microb Cell Fact ; 23(1): 99, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566096

RESUMO

BACKGROUND: The yeast Komagataella phaffii has become a very popular host for heterologous protein expression, very often based on the use of the AOX1 promoter, which becomes activated when cells are grown with methanol as a carbon source. However, the use of methanol in industrial settings is not devoid of problems, and therefore, the search for alternative expression methods has become a priority in the last few years. RESULTS: We recently reported that moderate alkalinization of the medium triggers a fast and wide transcriptional response in K. phaffii. Here, we present the utilization of three alkaline pH-responsive promoters (pTSA1, pHSP12 and pPHO89) to drive the expression of a secreted phytase enzyme by simply shifting the pH of the medium to 8.0. These promoters offer a wide range of strengths, and the production of phytase could be modulated by adjusting the pH to specific values. The TSA1 and PHO89 promoters offered exquisite regulation, with virtually no enzyme production at acidic pH, while limitation of Pi in the medium further potentiated alkaline pH-driven phytase expression from the PHO89 promoter. An evolved strain based on this promoter was able to produce twice as much phytase as the reference pAOX1-based strain. Functional mapping of the TSA1 and HSP12 promoters suggests that both contain at least two alkaline pH-sensitive regulatory regions. CONCLUSIONS: Our work shows that the use of alkaline pH-regulatable promoters could be a useful alternative to methanol-based expression systems, offering advantages in terms of simplicity, safety and economy.


Assuntos
6-Fitase , Saccharomycetales , Pichia/metabolismo , Metanol/metabolismo , 6-Fitase/genética , 6-Fitase/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo
2.
Methods Mol Biol ; 2760: 157-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468088

RESUMO

Pichia pastoris is known for its excellent protein expression ability. As an industrial methyl nutritional yeast, it can effectively utilize methanol as the sole carbon source, serving as a potential platform for C1 biotransformation. Unfortunately, the lack of synthetic biology tools in P. pastoris limits its broad applications, particularly when multigene pathways should be manipulated. Here, the CRISPR/Cas9 system is established to efficiently integrate multiple heterologous genes to construct P. pastoris cell factories. In this protocol, with the 2,3-butanediol (BDO) biosynthetic pathway as a representative example, the procedures to construct P. pastoris cell factories are detailed using the established CRISPR-based multiplex genome integration toolkit, including donor plasmid construction, competent cell preparation and transformation, and transformant verification. The application of the CRISPR toolkit is demonstrated by the construction of engineered P. pastoris for converting methanol to BDO. This lays the foundation for the construction of P. pastoris cell factories harboring multi-gene biosynthetic pathways for the production of high-value compounds.


Assuntos
Sistemas CRISPR-Cas , Saccharomycetales , Sistemas CRISPR-Cas/genética , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/metabolismo , Butileno Glicóis/metabolismo
3.
Antonie Van Leeuwenhoek ; 117(1): 47, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427176

RESUMO

Desulfofundulus kuznetsovii is a thermophilic, spore-forming sulphate-reducing bacterium in the family Peptococcaceae. In this study, we describe a newly isolated strain of D. kuznetsovii, strain TPOSR, and compare its metabolism to the type strain D. kuznetsovii 17T. Both strains grow on a large variety of alcohols, such as methanol, ethanol and propane-diols, coupled to the reduction of sulphate. Strain 17T metabolizes methanol via two routes, one involving a cobalt-dependent methyl transferase and the other using a cobalt-independent alcohol dehydrogenase. However, strain TPOSR, which shares 97% average nucleotide identity with D. kuznetsovii strain 17T, lacks several genes from the methyl transferase operon found in strain 17T. The gene encoding the catalytically active methyl transferase subunit B is missing, indicating that strain TPOSR utilizes the alcohol dehydrogenase pathway exclusively. Both strains grew with methanol during cobalt starvation, but growth was impaired. Strain 17T was more sensitive to cobalt deficiency, due to the repression of its methyl transferase system. Our findings shed light on the metabolic diversity of D. kuznetsovii and their metabolic differences of encoding one or two routes for the conversion of methanol.


Assuntos
Álcool Desidrogenase , Metanol , Peptococcaceae , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Metanol/metabolismo , Oxirredução , Transferases/metabolismo , Sulfatos/metabolismo , Cobalto , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo
4.
ACS Synth Biol ; 13(3): 888-900, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359048

RESUMO

Methanol has gained substantial attention as a substrate for biomanufacturing due to plentiful stocks and nonreliance on agriculture, and it can be sourced renewably. However, due to inevitable complexities in cell metabolism, microbial methanol conversion requires further improvement before industrial applicability. Here, we present a novel, parallel strategy using artificial cells to provide a simplified and well-defined environment for methanol utilization as artificial methylotrophic cells. We compartmentalized a methanol-utilizing enzyme cascade, including NAD-dependent methanol dehydrogenase (Mdh) and pyruvate-dependent aldolase (KHB aldolase), in cell-sized lipid vesicles using the inverted emulsion method. The reduction of cofactor NAD+ to NADH was used to quantify the conversion of methanol within individual artificial methylotrophic cells via flow cytometry. Compartmentalization of the reaction cascade in liposomes led to a 4-fold higher NADH production compared with bulk enzyme experiments, and the incorporation of KHB aldolase facilitated another 2-fold increase above the Mdh-only reaction. This methanol-utilizing platform can serve as an alternative route to speed up methanol biological conversion, eventually shifting sugar-based bioproduction toward a sustainable methanol bioeconomy.


Assuntos
Células Artificiais , Metanol , Metanol/metabolismo , NAD/metabolismo , Frutose-Bifosfato Aldolase , Aldeído Liases/metabolismo
5.
Biochem Biophys Res Commun ; 703: 149684, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38367514

RESUMO

Malaria is a parasitic disease that remains a global concern and the subject of many studies. Metabolomics has emerged as an approach to better comprehend complex pathogens and discover possible drug targets, thus giving new insights that can aid in the development of antimalarial therapies. However, there is no standardized method to extract metabolites from in vitro Plasmodium falciparum intraerythrocytic parasites, the stage that causes malaria. Additionally, most methods are developed with either LC-MS or NMR analysis in mind, and have rarely been evaluated with both tools. In this work, three extraction methods frequently found in the literature were reproduced and samples were analyzed through both LC-MS and 1H NMR, and evaluated in order to reveal which is the most repeatable and consistent through an array of different tools, including chemometrics, peak detection and annotation. The most reliable method in this study proved to be a double extraction with methanol and methanol/water (80:20, v/v). Metabolomic studies in the field should move towards standardization of methodologies and the use of both LC-MS and 1H NMR in order to make data more comparable between studies and facilitate the achievement of biologically interpretable information.


Assuntos
Antimaláricos , Malária , Humanos , Plasmodium falciparum/metabolismo , 60705 , Cromatografia Líquida/métodos , Espectroscopia de Prótons por Ressonância Magnética , Metanol/metabolismo , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos
6.
Microb Cell Fact ; 23(1): 66, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402195

RESUMO

BACKGROUND: Komagataella phaffii (a.k.a. Pichia pastoris) harbors a glutamate utilization pathway in which synthesis of glutamate dehydrogenase 2 and phosphoenolpyruvate carboxykinase (PEPCK) is induced by glutamate. Glutamate-inducible synthesis of these enzymes is regulated by Rtg1p, a cytosolic, basic helix-loop-helix protein. Here, we report food-grade monosodium glutamate (MSG)-inducible recombinant protein production from K. phaffii PEPCK promoter (PPEPCK) using green fluorescent protein (GFP) and receptor binding domain of SARS-CoV-2 virus (RBD) as model proteins. RESULTS: PPEPCK-RBD/GFP expression cassette was integrated at two different sites in the genome to improve recombinant protein yield from PPEPCK. The traditional, methanol-inducible alcohol oxidase 1 promoter (PAOX1) was used as the benchmark. Initial studies carried out with MSG as the inducer resulted in low recombinant protein yield. A new strategy employing MSG/ethanol mixed feeding improved biomass generation as well as recombinant protein yield. Cell density of 100-120 A600 units/ml was achieved after 72 h of induction in shake flask cultivations, resulting in recombinant protein yield from PPEPCK that is comparable or even higher than that from PAOX1. CONCLUSIONS: We have designed an induction medium for recombinant protein production from K. phaffii PPEPCK in shake flask cultivations. It consists of 1.0% yeast extract, 2.0% peptone, 0.17% yeast nitrogen base with ammonium sulfate, 100 mM potassium phosphate (pH 6.0), 0.4 mg/L biotin, 2.0% MSG, and 2% ethanol. Substitution of ammonium sulphate with 0.5% urea is optional. Carbon source was replenished every 24 h during 72 h induction period. Under these conditions, GFP and RBD yields from PPEPCK equaled and even surpassed those from PAOX1. Compared to the traditional methanol-inducible expression system, the inducers of glutamate-inducible expression system are non-toxic and their metabolism does not generate toxic metabolites such as formaldehyde and hydrogen peroxide. This study sets the stage for MSG-inducible, industrial scale recombinant protein production from K. phaffii PPEPCK in bioreactors.


Assuntos
Metanol , Saccharomycetales , Metanol/metabolismo , Glutamato de Sódio/farmacologia , Glutamato de Sódio/metabolismo , Proteínas Recombinantes , Glutamatos/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Etanol/metabolismo , Pichia/genética , Pichia/metabolismo
7.
Microb Cell Fact ; 23(1): 55, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368340

RESUMO

BACKGROUND: Pichia pastoris is a widely utilized host for heterologous protein expression and biotransformation. Despite the numerous strategies developed to optimize the chassis host GS115, the potential impact of changes in cell wall polysaccharides on the fitness and performance of P. pastoris remains largely unexplored. This study aims to investigate how alterations in cell wall polysaccharides affect the fitness and function of P. pastoris, contributing to a better understanding of its overall capabilities. RESULTS: Two novel mutants of GS115 chassis, H001 and H002, were established by inactivating the PAS_chr1-3_0225 and PAS_chr1-3_0661 genes involved in ß-glucan biosynthesis. In comparison to GS115, both modified hosts exhibited a looser cell surface and larger cell size, accompanied by faster growth rates and higher carbon-to-biomass conversion ratios. When utilizing glucose, glycerol, and methanol as exclusive carbon sources, the carbon-to-biomass conversion rates of H001 surpassed GS115 by 10.00%, 9.23%, and 33.33%, respectively. Similarly, H002 exhibited even higher increases of 32.50%, 12.31%, and 53.33% in carbon-to-biomass conversion compared to GS115 under the same carbon sources. Both chassis displayed elevated expression levels of green fluorescent protein (GFP) and human epidermal growth factor (hegf). Compared to GS115/pGAPZ A-gfp, H002/pGAPZ A-gfp showed a 57.64% higher GFP expression, while H002/pPICZα A-hegf produced 66.76% more hegf. Additionally, both mutant hosts exhibited enhanced biosynthesis efficiencies of S-adenosyl-L-methionine and ergothioneine. H001/pGAPZ A-sam2 synthesized 21.28% more SAM at 1.14 g/L compared to GS115/pGAPZ A-sam2, and H001/pGAPZ A-egt1E obtained 45.41% more ERG at 75.85 mg/L. The improved performance of H001 and H002 was likely attributed to increased supplies of NADPH and ATP. Specifically, H001 and H002 exhibited 5.00-fold and 1.55-fold higher ATP levels under glycerol, and 6.64- and 1.47-times higher ATP levels under methanol, respectively, compared to GS115. Comparative lipidomic analysis also indicated that the mutations generated richer unsaturated lipids on cell wall, leading to resilience to oxidative damage. CONCLUSIONS: Two novel P. pastoris chassis hosts with impaired ß-1,3-D-glucan biosynthesis were developed, showcasing enhanced performances in terms of growth rate, protein expression, and catalytic capabilities. These hosts exhibit the potential to serve as attractive alternatives to P. pastoris GS115 for various bioproduction applications.


Assuntos
Metanol , Pichia , Saccharomycetales , Humanos , Pichia/metabolismo , Metanol/metabolismo , Glicerol/metabolismo , Trifosfato de Adenosina/metabolismo , Carbono/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Microb Cell Fact ; 23(1): 24, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233843

RESUMO

BACKGROUND: The genus Eubacterium is quite diverse and includes several acetogenic strains capable of fermenting C1-substrates into valuable products. Especially, Eubacterium limosum and closely related strains attract attention not only for their capability to ferment C1 gases and liquids, but also due to their ability to produce butyrate. Apart from its well-elucidated metabolism, E. limosum is also genetically accessible, which makes it an interesting candidate to be an industrial biocatalyst. RESULTS: In this study, we examined genomic, phylogenetic, and physiologic features of E. limosum and the closest related species E. callanderi as well as E. maltosivorans. We sequenced the genomes of the six Eubacterium strains 'FD' (DSM 3662T), 'Marburg' (DSM 3468), '2A' (DSM 2593), '11A' (DSM 2594), 'G14' (DSM 107592), and '32' (DSM 20517) and subsequently compared these with previously available genomes of the E. limosum type strain (DSM 20543T) as well as the strains 'B2', 'KIST612', 'YI' (DSM 105863T), and 'SA11'. This comparison revealed a close relationship between all eleven Eubacterium strains, forming three distinct clades: E. limosum, E. callanderi, and E. maltosivorans. Moreover, we identified the gene clusters responsible for methanol utilization as well as genes mediating chain elongation in all analyzed strains. Subsequent growth experiments revealed that strains of all three clades can convert methanol and produce acetate, butyrate, and hexanoate via reverse ß-oxidation. Additionally, we used a harmonized electroporation protocol and successfully transformed eight of these Eubacterium strains to enable recombinant plasmid-based expression of the gene encoding the fluorescence-activating and absorption shifting tag (FAST). Engineered Eubacterium strains were verified regarding their FAST-mediated fluorescence at a single-cell level using a flow cytometry approach. Eventually, strains 'FD' (DSM 3662T), '2A' (DSM 2593), '11A' (DSM 2594), and '32' (DSM 20517) were genetically engineered for the first time. CONCLUSION: Strains of E. limosum, E. callanderi, and E. maltosivorans are outstanding candidates as biocatalysts for anaerobic C1-substrate conversion into valuable biocommodities. A large variety of strains is genetically accessible using a harmonized electroporation protocol, and FAST can serve as a reliable fluorescent reporter protein to characterize genetically engineered cells. In total eleven strains have been assigned to distinct clades, providing a clear and updated classification. Thus, the description of respective Eubacterium species has been emended, improved, aligned, and is requested to be implemented in respective databases.


Assuntos
Eubacterium , Engenharia Metabólica , Eubacterium/genética , Metanol/metabolismo , Filogenia , Butiratos/metabolismo
9.
Appl Environ Microbiol ; 90(2): e0174023, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193674

RESUMO

Pichia pastoris (P. pastoris) is one of the most popular cell factories for expressing exogenous proteins and producing useful chemicals. The alcohol oxidase 1 promoter (PAOX1) is the most commonly used strong promoter in P. pastoris and has the characteristic of biphasic expression. However, the inducer for PAOX1, methanol, has toxicity and poses risks in industrial settings. In the present study, analyzing transcriptomic data of cells collected at different stages of growth found that the formate dehydrogenase (FDH) gene ranked 4960th in relative expression among 5032 genes during the early logarithmic growth phase but rose to the 10th and 1st during the middle and late logarithmic growth phases, respectively, displaying a strict biphasic expression characteristic. The unique transcriptional regulatory profile of the FDH gene prompted us to investigate the properties of its promoter (PFDH800). Under single-copy conditions, when a green fluorescent protein variant was used as the expression target, the PFDH800 achieved 119% and 69% of the activity of the glyceraldehyde-3-phosphate dehydrogenase promoter and PAOX1, respectively. After increasing the copy number of the expression cassette in the strain to approximately four copies, the expression level of GFPuv driven by PFDH800 increased to approximately 2.5 times that of the strain containing GFPuv driven by a single copy of PAOX1. Our PFDH800-based expression system exhibited precise biphasic expression, ease of construction, minimal impact on normal cellular metabolism, and high strength. Therefore, it has the potential to serve as a new expression system to replace the PAOX1 promoter.IMPORTANCEThe alcohol oxidase 1 promoter (PAOX1) expression system has the characteristics of biphasic expression and high expression levels, making it the most widely used promoter in the yeast Pichia pastoris. However, PAOX1 requires methanol induction, which can be toxic and poses a fire hazard in large quantities. Our research has found that the activity of PFDH800 is closely related to the growth state of cells and can achieve biphasic expression without the need for an inducer. Compared to other reported non-methanol-induced biphasic expression systems, the system based on the PFDH800 offers several advantages, including high expression levels, simple construction, minimal impact on cellular metabolism, no need for an inducer, and the ability to fine-tune expression.


Assuntos
Metanol , Pichia , Saccharomycetales , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo
10.
Microb Cell Fact ; 23(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172830

RESUMO

BACKGROUND: One carbon (C1) molecules such as methanol have the potential to become sustainable feedstocks for biotechnological processes, as they can be derived from CO2 and green hydrogen, without the need for arable land. Therefore, we investigated the suitability of the methylotrophic yeast Ogataea polymorpha as a potential production organism for platform chemicals derived from methanol. We selected acetone, malate, and isoprene as industrially relevant products to demonstrate the production of compounds with 3, 4, or 5 carbon atoms, respectively. RESULTS: We successfully engineered O. polymorpha for the production of all three molecules and demonstrated their production using methanol as carbon source. We showed that the metabolism of O. polymorpha is well suited to produce malate as a product and demonstrated that the introduction of an efficient malate transporter is essential for malate production from methanol. Through optimization of the cultivation conditions in shake flasks, which included pH regulation and constant substrate feeding, we were able to achieve a maximum titer of 13 g/L malate with a production rate of 3.3 g/L/d using methanol as carbon source. We further demonstrated the production of acetone and isoprene as additional heterologous products in O. polymorpha, with maximum titers of 13.6 mg/L and 4.4 mg/L, respectively. CONCLUSION: These findings highlight how O. polymorpha has the potential to be applied as a versatile cell factory and contribute to the limited knowledge on how methylotrophic yeasts can be used for the production of low molecular weight biochemicals from methanol. Thus, this study can serve as a point of reference for future metabolic engineering in O. polymorpha and process optimization efforts to boost the production of platform chemicals from renewable C1 carbon sources.


Assuntos
Metanol , Pichia , Pichia/genética , Pichia/metabolismo , Metanol/metabolismo , Malatos/metabolismo , Acetona/metabolismo , Carbono/metabolismo
11.
Biotechnol J ; 19(1): e2300483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041508

RESUMO

Rhodotorula toruloides can utilize crude glycerol as the low-cost carbon source for lipid production, but its growth is subjected to inhibition by methanol in crude glycerol. Here, transcriptome profiling demonstrated that 1004 genes were significantly regulated in the strain R. toruloides TO2 under methanol stress. Methanol impaired the function of membrane transport and subsequently weakened the utilization of glycerol, activities of the primary metabolism and functions of nucleus and ribosome. Afterwards the tolerance of TO2 to methanol was improved by using two-round adaptive laboratory evolution (ALE). The final strain M2-ale had tolerance up to 3.5% of methanol. 1 H NMR-based metabolome analysis indicated that ALE not only improved the tolerance of M2-ale to methanol but also tuned the carbon flux towards the biosynthesis of glycerolipid-related metabolites. The biomass and lipid titer of M2-ale reached 14.63 ± 0.45 g L-1 and 7.06 ± 0.44 g L-1 at 96 h in the crude glycerol medium, which increased up to 17.69% and 31.39%, respectively, comparing with TO2. Afterwards, an effective method for cell lysis was developed by combining sonication and enzymatic hydrolysis (So-EnH). The lytic effect of So-EnH was validated by using confocal imaging and flow cytometry. At last, lipid recovery rate reached 95.4 ± 2.7% at the optimized condition.


Assuntos
Glicerol , Rhodotorula , Glicerol/metabolismo , Metanol/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Biomassa , Lipídeos
12.
Bioresour Technol ; 393: 130144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042432

RESUMO

This study aimed to establish a high-level phenol bioproduction system from glycerol through metabolic engineering of the yeast Pichia pastoris (Komagataella phaffii). Introducing tyrosine phenol-lyase to P. pastoris led to a production of 59 mg/L of phenol in flask culture. By employing a strain of P. pastoris that overproduces tyrosine-a precursor to phenol-we achieved a phenol production of 1052 mg/L in glycerol fed-batch fermentation. However, phenol concentrations exceeding 1000 mg/L inhibited P. pastoris growth. A phenol pertraction system utilizing a hollow fiber membrane contactor and tributyrin as the organic solvent was developed to reduce phenol concentration in the culture medium. Integrating this system with glycerol fed-batch fermentation resulted in a 214 % increase in phenol titer (3304 mg/L) compared to glycerol fed-batch fermentation alone. These approaches offer a significant framework for the microbial production of chemicals and materials that are highly toxic to microorganisms.


Assuntos
Glicerol , Fenol , Saccharomycetales , Fermentação , Glicerol/metabolismo , Fenol/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Metanol/metabolismo
13.
Int Microbiol ; 27(1): 49-66, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38038804

RESUMO

Nitrogen and carbon are the two most essential nutrient elements, and their metabolism is tightly coupled in single carbon metabolic microorganisms. However, the nitrogen metabolism and the nitrogen/carbon (N/C) metabolic balance in single-carbon metabolism is poorly studied. In this study, the nitrogen metabolism pattern of the fast growing methanotrophs Methylomonas sp. ZR1 grown in methane and methanol was studied. Effect study of different nitrogen sources on the cell growth of ZR1 indicates that nitrate salts are the best nitrogen source supporting the growth of ZR1 using methane and methanol as carbon source. However, its metabolic intermediate ammonium was found to accumulate with high N/C ratio in the medium and consequently inhibit the growth of ZR1. Studies of carbon and nitrogen metabolic kinetic under different N/C ratio conditions indicate that the accumulation of NH4+ is caused by the imbalanced nitrogen and carbon metabolism in ZR1. Feeding carbon skeleton α-ketoglutaric acid could effectively relieve the inhibition effect of NH4+ on the growth of ZR1, which further confirms this assumption. qPCR analysis of the expression level of the central metabolic key enzyme gene indicates that the nitrogen metabolic intermediate ammonium has strong regulation effect on the central nitrogen and carbon metabolism in ZR1. qPCR-combined genomic analysis confirms that a third ammonium assimilation pathway glycine synthesis system is operated in ZR1 to balance the nitrogen and carbon metabolism. Based on the qPCR result, it was also found that ZR1 employs two strategies to relieve ammonium stress in the presence of ammonium: assimilating excess ammonium or cutting off the nitrogen reduction reactions according to the available C1 substrate. Validating the connections between single-carbon and nitrogen metabolism and studying the accumulation and assimilation mechanism of ammonium will contribute to understand how nitrogen regulates cellular growth in single-carbon metabolic microorganisms.


Assuntos
Compostos de Amônio , Methylomonas , Metanol/metabolismo , Methylomonas/genética , Methylomonas/metabolismo , Metano/metabolismo , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo
14.
Bioresour Technol ; 393: 130104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008225

RESUMO

This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.


Assuntos
Ácido Láctico/análogos & derivados , Methylobacterium , Methylobacterium/genética , Methylobacterium/metabolismo , Fermentação , Metanol/metabolismo , Trifosfato de Adenosina/metabolismo , Engenharia Metabólica/métodos
15.
Biotechnol Appl Biochem ; 71(1): 123-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846178

RESUMO

Recent studies in the biopharmaceutical industry have shown an increase in the productivity and production efficiency of recombinant proteins by continuous culture. In this research, a new upstream fermentation process was developed for the production of recombinant uricase in the methylotrophic yeast Pichia pastoris. Expression of recombinant protein in this system is under the control of the AOX1 promoter and therefore requires methanol as an inducing agent and carbon/energy source. Considering the biphasic growth characteristics of conventional fed-batch fermentation, physical separation of the growth and induction stages for better control of the continuous fermentation process resulted in higher dry-cell weight (DCW) and enhanced recombinant urate oxidase activity. The DCW and recombinant uricase activity enzyme for fed-batch fermentation were 79 g/L and 6.8 u/mL. During the continuous process, in the growth fermenter at a constant dilution rate of 0.025 h-1 , DCW increased to 88.39 g/L. In the induction fermenter, at methanol feeding rates of 30, 60, and 80 mL/h, a recombinant uricase activity was 4.13, 7.2, and 0 u/mL, respectively. The optimum methanol feeding regime in continuous fermentation resulted in a 4.5-fold improvement in productivity compared with fed-batch fermentation from 0.04 u/mL/h (0.0017 mg/mL/h) to 0.18 u/mL/h (0.0078 mg/mL/h).


Assuntos
Metanol , Saccharomycetales , Urato Oxidase , Fermentação , Urato Oxidase/genética , Urato Oxidase/metabolismo , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes
16.
Recent Adv Antiinfect Drug Discov ; 19(2): 159-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37366361

RESUMO

BACKGROUND: Plants are harmed by parasitic organisms, and toxic poisons are created. Phytopathogenic fungi create toxins that can severely harm plants' basic physiological functioning. OBJECTIVE: Investigation of antifungal impact of various fractions of methanol extract of Artemisia herba-alba to Aspergillus niger as a plant pathogen. METHODS: Artemisia herba-alba extract was purified using column chromatography, giving various antifungal fractions tested versus A. niger. RESULTS: The 6th fraction give the highest inhibition zone with a diameter of 5.4 cm and MIC 125.02 ± 4.9 µg/ml, which was identified using Mass spectroscopy, 1HNMR, Elemental analysis as well as IR testing, revealing the chemical formula of the purified fraction. Ultrastructure alteration of treated A. niger was examined versus control using the transmission electron microscope. Purified fraction has tested versus normal cell line with minimal cytotoxicity. CONCLUSION: These results revealed the possibility of using Artemisia herba-alba methanol extract as a promising antifungal versus phytopathogenic fungi, especially A. niger after more verification of results.


Assuntos
Antifúngicos , Artemisia , Antifúngicos/farmacologia , Aspergillus niger , Zea mays , Artemisia/química , Metanol/metabolismo , Extratos Vegetais/farmacologia
17.
Curr Opin Biotechnol ; 85: 103047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128199

RESUMO

Single-carbon (C1) biorefinery plays a key role in the consumption of global greenhouse gases and a circular carbon economy. Thereby, we have focused on the valorization of C1 compounds (e.g. methanol, formaldehyde, and formate) into multicarbon products, including bioplastic monomers, glycolate, and ethylene glycol. For instance, methanol, derived from the oxidation of CH4, can be converted into glycolate, ethylene glycol, or erythrulose via formaldehyde and glycolaldehyde, employing C1 and/or C2 carboligases as essential enzymes. Escherichia coli was engineered to convert formate, produced from CO via CO2 or from CO2 directly, into glycolate. Recent progress in the design of biotransformation pathways, enzyme discovery, and engineering, as well as whole-cell biocatalyst engineering for C1 biorefinery, was addressed in this review.


Assuntos
Carbono , Metanol , Metanol/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Etilenoglicol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Formiatos/metabolismo , Formaldeído/metabolismo , Glicolatos/metabolismo
18.
Microbes Environ ; 38(4)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38092408

RESUMO

The effects of soluble and insoluble lanthanides on gene expression in Methylococcus capsulatus Bath were investigated. Genes for lanthanide-containing methanol dehydrogenases (XoxF-MDHs) and their calcium-containing counterparts (MxaFI-MDHs) were up- and down-regulated, respectively, by supplementation with soluble lanthanide chlorides, indicating that M. capsulatus has the "lanthanide switch" observed in other methanotrophs. Insoluble lanthanide oxides also induced the lanthanide switch and were dissolved by the spent medium of M. capsulatus, suggesting the presence of lanthanide-chelating compounds. A transcriptome ana-lysis indicated that a gene cluster for the synthesis of an enterobactin-like metal chelator contributed to the dissolution of insoluble lanthanides.


Assuntos
Elementos da Série dos Lantanídeos , Methylococcus capsulatus , Elementos da Série dos Lantanídeos/metabolismo , Metanol/metabolismo , Metano/metabolismo , Methylococcus capsulatus/genética , Methylococcus capsulatus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
19.
Nat Commun ; 14(1): 8490, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123535

RESUMO

One-carbon (C1) substrates, such as methanol or formate, are attractive feedstocks for circular bioeconomy. These substrates are typically converted into formaldehyde, serving as the entry point into metabolism. Here, we design an erythrulose monophosphate (EuMP) cycle for formaldehyde assimilation, leveraging a promiscuous dihydroxyacetone phosphate dependent aldolase as key enzyme. In silico modeling reveals that the cycle is highly energy-efficient, holding the potential for high bioproduct yields. Dissecting the EuMP into four modules, we use a stepwise strategy to demonstrate in vivo feasibility of the modules in E. coli sensor strains with sarcosine as formaldehyde source. From adaptive laboratory evolution for module integration, we identify key mutations enabling the accommodation of the EuMP reactions with endogenous metabolism. Overall, our study demonstrates the proof-of-concept for a highly efficient, new-to-nature formaldehyde assimilation pathway, opening a way for the development of a methylotrophic platform for a C1-fueled bioeconomy in the future.


Assuntos
Escherichia coli , Metanol , Escherichia coli/genética , Escherichia coli/metabolismo , Metanol/metabolismo , Formaldeído/metabolismo , Sarcosina , Frutose-Bifosfato Aldolase/metabolismo , Engenharia Metabólica
20.
Microb Cell Fact ; 22(1): 237, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978380

RESUMO

BACKGROUND: Methanol is increasingly gaining attraction as renewable carbon source to produce specialty and commodity chemicals, as it can be generated from renewable sources such as carbon dioxide (CO2). In this context, native methylotrophs such as the yeast Komagataella phaffii (syn Pichia pastoris) are potentially attractive cell factories to produce a wide range of products from this highly reduced substrate. However, studies addressing the potential of this yeast to produce bulk chemicals from methanol are still scarce. 3-Hydroxypropionic acid (3-HP) is a platform chemical which can be converted into acrylic acid and other commodity chemicals and biopolymers. 3-HP can be naturally produced by several bacteria through different metabolic pathways. RESULTS: In this study, production of 3-HP via the synthetic ß-alanine pathway has been established in K. phaffii for the first time by expressing three heterologous genes, namely panD from Tribolium castaneum, yhxA from Bacillus cereus, and ydfG from Escherichia coli K-12. The expression of these key enzymes allowed a production of 1.0 g l-1 of 3-HP in small-scale cultivations using methanol as substrate. The addition of a second copy of the panD gene and selection of a weak promoter to drive expression of the ydfG gene in the PpCß21 strain resulted in an additional increase in the final 3-HP titer (1.2 g l-1). The 3-HP-producing strains were further tested in fed-batch cultures. The best strain (PpCß21) achieved a final 3-HP concentration of 21.4 g l-1 after 39 h of methanol feeding, a product yield of 0.15 g g-1, and a volumetric productivity of 0.48 g l-1 h-1. Further engineering of this strain aiming at increasing NADPH availability led to a 16% increase in the methanol consumption rate and 10% higher specific productivity compared to the reference strain PpCß21. CONCLUSIONS: Our results show the potential of K. phaffii as platform cell factory to produce organic acids such as 3-HP from renewable one-carbon feedstocks, achieving the highest volumetric productivities reported so far for a 3-HP production process through the ß-alanine pathway.


Assuntos
Escherichia coli K12 , Metanol , Metanol/metabolismo , Escherichia coli K12/genética , Escherichia coli/metabolismo , beta-Alanina/genética , Engenharia Metabólica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...